Citrus Peel Waste as an Electrolyte Solution for Energy Storage in Bio-Batteries
Viewed = 0 time(s)
Abstract
This study explores the potential of citrus peel waste as an electrolyte solution for energy storage in bio-batteries. This research offers an environmentally friendly solution to obtain clean and sustainable energy by utilizing abundant organic waste as raw material. An experimental method was conducted to analyze the ability of electrolyte solutions from citrus fruit peel waste to support bio-battery performance. The results showed that citrus peel waste has significant potential as an electrolyte solution with competitive capabilities in energy storage. The implications of this research include the development of more sustainable alternative energy technologies and the effective use of unused resources, which could be an essential step in achieving global sustainability goals.
Downloads
References
[2] I. Jaya and Muhammad Nawawi, “Socialization of Microcontroller use in Medical Support Equipment for Indonesian Electromedical Students,” Salus Publica J. Community Serv., vol. 2, no. 3, pp. 174–177, Jan. 2025, doi: 10.58905/saluspublica.v2i3.347.
[3] X. Zhang et al., “A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries,” Nat. Commun., vol. 15, no. 1, pp. 1–18, 2024, doi: 10.1038/s41467-024-44858-3.
[4] C. N. Nupearachchi, G. C. Wickramasinghe, and V. P. S. Perera, “Investigation of Applicability of Banana Pith as Electrolytic Media for Bio-Batteries,” pp. 509–512.
[5] Anggara Trisna Nugraha et al., “Anticipation of Deep Discharge of Batteries in Solar Panels Based on the Particle Swarm Optimization (PSO)Algorithm,” SAGA J. Technol. Inf. Syst., vol. 2, no. 2, pp. 212–227, Jul. 2024, doi: 10.58905/saga.v2i2.304.
[6] J. Cho, S. Jeong, and Y. Kim, “Commercial and research battery technologies for electrical energy storage applications,” Prog. Energy Combust. Sci., vol. 48, pp. 84–101, 2015, doi: 10.1016/j.pecs.2015.01.002.
[7] A. K. P. A., Urba Ziyauddin Siddiqui, “the Future of Energy Bio Battery,” Int. J. Res. Eng. Technol., vol. 02, no. 11, pp. 99–111, 2013, doi: 10.15623/ijret.2013.0211017.
[8] K. Guerra, A. Welfle, R. Gutiérrez-alvarez, and S. Moreno, “Great Britain ’ s power system with a high penetration of renewable energy : Dataset supporting future scenarios,” Data Br., vol. 53, p. 110113, 2024, doi: 10.1016/j.dib.2024.110113.
[9] R. Babaei, D. S. K. Ting, and R. Carriveau, “Feasibility and optimal sizing analysis of stand-alone hybrid energy systems coupled with various battery technologies: A case study of Pelee Island,” Energy Reports, vol. 8, pp. 4747–4762, 2022, doi: 10.1016/j.egyr.2022.03.133.
[10] S. Z. J. Zaidi, M. Raza, S. Hassan, C. Harito, and F. C. Walsh, “A DFT Study of Heteroatom Doped-Pyrazine as an Anode in Sodium ion Batteries,” J. New Mater. Electrochem. Syst., vol. 24, no. 1, pp. 1–8, 2021, doi: 10.14447/jnmes.v24i1.a01.
[11] S. Biswas, Y. Lee, H. Choi, and H. Kim, “Current Development in Bio-implantable Sensors,” J. Sens. Sci. Technol., vol. 31, no. 6, pp. 403–410, 2022, doi: 10.46670/JSST.2022.31.6.403.
[12] M. Buaki-Sogó, L. García-Carmona, M. Gil-Agustí, L. Zubizarreta, M. García-Pellicer, and A. Quijano-López, “Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices,” Top. Curr. Chem., vol. 378, no. 6, pp. 1–28, 2020, doi: 10.1007/s41061-020-00312-8.
[13] S. Nuryanti, S. Rahmawati, P. Ningsih, T. Santoso, and Y. A. Pondanan, “UTILIZATION O. F CASSAVA PEEL (Manihot esculenta) AS BIO-BATTERY,” Rasayan J. Chem., vol. 2022, no. Special Issue, pp. 249–254, 2022, doi: 10.31788/RJC.2022.1557093.
[14] M. D. Manogaran, Y. H. Phua, M. R. Shamsuddin, J. W. Lim, and N. Mansor, “Application of organic additives as voltage enhancers for vermicompost-derived bio-battery,” Energy Nexus, vol. 8, no. October, p. 100163, 2022, doi: 10.1016/j.nexus.2022.100163.
[15] L. J. R. Nunes, “A case study about biomass torrefaction on an industrial scale: Solutions to problems related to self-heating, difficulties in pelletizing, and excessive wear of production equipment,” Appl. Sci., vol. 10, no. 7, 2020, doi: 10.3390/app10072546.
[16] K. Ullah et al., “An optimal energy optimization strategy for smart grid integrated with renewable energy sources and demand response programs,” Energies, vol. 13, no. 21, pp. 1–17, 2020, doi: 10.3390/en13215718.
[17] R. Uddin, A. J. Shaikh, H. R. Khan, M. A. Shirazi, A. Rashid, and S. A. Qazi, “Renewable energy perspectives of pakistan and turkey: Current analysis and policy recommendations,” Sustain., vol. 13, no. 6, 2021, doi: 10.3390/su13063349.
[18] N. Fitrya, S. P. Wirman, and R. D. Rahayu, “Environmentally Friendly Emergency Lighting System Using Bio Batteries from Pineapple Skin Waste as Energy Source,” J. ILMU Fis. | Univ. ANDALAS, vol. 13, no. 2, pp. 118–125, Sep. 2021, doi: 10.25077/jif.13.2.118-125.2021.
[19] M. Biobaterai and R. Lingkungan, “DIRECTION FLOW ( DC ) ELECTRIC ENERGY PRODUCTION THROUGH UTILIZATION OF BANANA LEATHER AND PAPAYA LEATHER WASTE TO BE AN ENVIRONMENTALLY FRIENDLY BIOBATTERY,” vol. 4, no. 01, pp. 32–46, 2021, doi: 10.25299/rem.2021.vol4(01).6006.
[20] A. Oumarou Amadou et al., “A comparison among bio-derived acids as selective eco-friendly leaching agents for cobalt: the case study of hard-metal waste enhancement,” Front. Environ. Chem., vol. 4, no. June, pp. 1–15, Jun. 2023, doi: 10.3389/fenvc.2023.1216245.
[21] P. Cattaneo et al., “Sorting, Characterization, Environmentally Friendly Recycling, and Reuse of Components from End-of-Life 18650 Li Ion Batteries,” Adv. Sustain. Syst., vol. 7, no. 9, pp. 1–12, 2023, doi: 10.1002/adsu.202300161.
[22] A. Kim, S. H. Oh, A. Adhikari, B. R. Sathe, S. Kumar, and R. Patel, “Recent advances in modified commercial separators for lithium-sulfur batteries,” J. Mater. Chem. A, vol. 11, no. 15, pp. 7833–7866, 2023, doi: 10.1039/d2ta09266b.
[23] S. Fauzia, M. A. H. Ashiddiqi, and A. W. K. Khotimah, “Fruit and Vegetables as a Potential Source of Alternative Electrical Energy,” Proceeding Int. Conf. Sci. Eng., vol. 2, pp. 161–167, 2019, doi: 10.14421/icse.v2.77.
[24] A. Ristiono and M. Pd, “Analysis of the Utilization of Banana Peel Waste as an Environmentally Friendly Battery Component,” vol. 2, no. 2, pp. 47–53, 2021.
[25] A. A. N. B. B. Nathawibawa, I. N. S. Kumara, and W. G. Ariastina, “Analysis of Energy Production from Inverter on Grid-connected Solar Power Plant 1 MWp in Kayubihi Village, Bangli Regency,” Maj. Ilm. Teknol. Elektro, vol. 16, no. 1, p. 131, 2016, doi: 10.24843/mite.1601.18.
[26] A. Nelson, “Bio Battery from Waste Leather Based Collagen , Carbon Nanoparticles and Natural Electrolyte,” vol. 3, no. 11, pp. 10–12, 2018.
[27] M. B. Riaz, D. Hussain, S. U. Awan, S. Rizwan, S. Zainab, and S. A. Shah, “2-Dimensional Ti3C2Tx/NaF nano-composites as electrode materials for hybrid battery-supercapacitor applications,” Sci. Rep., vol. 14, no. 1, pp. 1–13, 2024, doi: 10.1038/s41598-024-52280-4.
[28] W. J. Kang, Y. Zhang, B. Li, and H. Guo, “Electrophotocatalytic hydrogenation of imines and reductive functionalization of aryl halides,” Nat. Commun., vol. 15, no. 1, pp. 1–10, 2024, doi: 10.1038/s41467-024-45015-6.
[29] C. Liu et al., “Operando formation of highly ef fi cient electrocatalysts induced by heteroatom leaching,” pp. 1–9, 2024, doi: 10.1038/s41467-023-44480-9.
[30] A. Mirshafiee, M. Nourollahi, and A. Shahriary, “Application of electro oxidation process for treating wastewater from petrochemical with mixed metal oxide electrode,” Sci. Rep., vol. 14, no. 1, pp. 1–13, 2024, doi: 10.1038/s41598-024-52201-5.
[31] Z. Hussain et al., “Construction of rechargeable bio-battery cells from electroactive antioxidants extracted from wasted vegetables,” Clean. Eng. Technol., vol. 5, p. 100342, 2021, doi: 10.1016/j.clet.2021.100342.
[32] T. Wikaningrum, R. Hakiki, M. P. Astuti, Y. Ismail, and F. M. Sidjabat, “the Eco Enzyme Application on Industrial Waste Activated Sludge Degradation,” Indones. J. Urban Environ. Technol., vol. 5, no. 2, pp. 115–133, 2022, doi: 10.25105/urbanenvirotech.v5i2.13535.
[33] I. Prasetyo and I. Saputro, “Repair and maintenance of wet batteries,” Surya Tek., vol. 3, no. 1, p. 24, 2015.
[34] E. P. N. Pangestu and Z. A. I. Supardi, “Study on Charge-Discharge Process in Pb-PbO2 Battery Cells,” J. Inov. Fis. Indones., vol. 9, no. 2, pp. 41–46, 2020.
[35] X. Han et al., “Operando monitoring of dendrite formation in lithium metal batteries via ultrasensitive tilted fiber Bragg grating sensors,” Light Sci. Appl., vol. 13, no. 1, 2024, doi: 10.1038/s41377-023-01346-5.
[36] C. Ma, Q. Hao, J. Hou, A. Liu, and X. Xiang, “Regulating oxygenated groups and carbon defects of carbon-based catalysts for electrochemical oxygen reduction to H2O2 by a mild and self-recycled modification strategy,” Carbon Res., vol. 3, no. 1, 2024, doi: 10.1007/s44246-023-00090-0.
[37] N. F. Pratama, “Calcination of PbSO4 with NaCl in the Process of Electricity Storage in Used Batteries,” Jtm, vol. 07, pp. 135–140, 2019.
[38] Y. Mu et al., “Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries,” Nano-Micro Lett., vol. 16, no. 1, pp. 1–18, 2024, doi: 10.1007/s40820-023-01301-4.
[39] R. Touileb and A. Abbou, “Simulation and optimization of hydrogen consumption in a fuel cell/battery hybrid vehicle,” Int. J. Power Electron. Drive Syst., vol. 14, no. 2, pp. 662–672, 2023, doi: 10.11591/ijpeds.v14.i2.pp662-672.
[40] Y. Xia et al., “Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc-Ion Batteries,” Nano-Micro Lett., vol. 16, no. 1, pp. 1–15, 2024, doi: 10.1007/s40820-023-01305-0.
[41] R. Arizona et al., “Jurnal Teknik Mesin : Vol . 10 , No . 1 , Februari 2021 ISSN 2549-2888,” vol. 10, no. 1, pp. 1–5, 2021.
[42] P. De Angelis, R. Cappabianca, M. Fasano, P. Asinari, and E. Chiavazzo, “Enhancing ReaxFF for Molecular Dynamics Simulations of Lithium-Ion Batteries: An interactive reparameterization protocol,” Sci. Rep., no. 0123456789, pp. 1–18, 2024, doi: 10.1038/s41598-023-50978-5.
[43] F. Salafa, L. Hayat, and A. Ma’ruf, “An Analysis of Orange Peel (Citrus Sinensis) as the Material for Electrolystes in Bio-Batteries,” J. Ris. Rekayasa Elektro, vol. 2, no. 1, pp. 0–9, 2020, doi: 10.30595/jrre.v2i1.6443.
[44] F. Mah Bengi et al., “Comparison of current and voltage of electrolyte solution of different types of salts,” Gravitasi J. Pendidik. Fis. dan Sains, vol. 1, no. 01, pp. 32–36, 2018.
[45] B. Häupler, A. Wild, and U. S. Schubert, “Carbonyls: Powerful organic materials for secondary batteries,” Adv. Energy Mater., vol. 5, no. 11, 2015, doi: 10.1002/aenm.201402034.
[46] Fahmi Salafa, Latiful Hayat, and Anwar Ma’ruf, “An_Analysis_of_Orange_Peel_Citrus_Sinensis_as_the_,” J. Ris. Rekayasa Elektro, vol. 2, no., pp. 1–9, 2020.
[47] J. E. Sitanggang, N. Z. Latifah, O. Sopian, Z. Saputra, A. B. D. Nandiyanto, and S. Anggraeni, “Analysis of Mixture Paste of Cassava Peel and Pineapple Peel as Electrolytes in Bio Battery,” ASEAN J. Sci. Eng., vol. 1, no. 2, pp. 53–56, 2021, doi: 10.17509/ajse.v1i2.34225.
[48] V. L. Martins and R. M. Torresi, “Water-in-salt electrolytes for high voltage aqueous electrochemical energy storage devices,” Curr. Opin. Electrochem., vol. 21, pp. 62–68, 2020, doi: 10.1016/j.coelec.2020.01.006.
Copyright (c) 2025 I Wayan Suriana, Ida Ayu Dwi Giriantari, Wayan Gede Ariastina, I Nyoman Setiawan (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
https://doi.org/10.35877/454RI.asci3974



