Sentiment Classification of General Election 2024 News Titles on Detik.com Online Media Website Using Multinominal Naive Bayes Method

  • Nathanael Yudhistira Pradipta Faculty of Information Technology, Budi Luhur University, Ciledug, Jakarta 12260, Indonesia (ID)
  • Hari Soetanto Faculty of Information Technology, Budi Luhur University, Ciledug, Jakarta 12260, Indonesia (ID)
Keywords: 2024 Election; digital democracy; Multinominal Naïve Bayes; sentiment

Viewed = 0 time(s)

Abstract

In The 2024 elections will produce a variety of political tendencies in society, with different opinions regarding its implementation and conditions. The role of news headlines is very important in influencing speculation and public responses to certain topics or issues. This study investigates the sentiment conveyed in news headlines about the 2024 Election using the Multinomial Naïve Bayes approach. Data was gathered from Detik.com, an online media platform, utilizing search terms “Pemilu 2024” and “Pemilihan Umum 2024” through web scraping methods. The data preprocessing involved converting to lowercase, tokenization, punctuation removal, stopword elimination, normalization, and stemming. Training data comprised 90% while 10% was allocated for testing. Analysis showed an accuracy of 83.59% using CountVectorizer for data transformation. Beyond sentiment classification, the research also examines how political processes shape media narratives and influence public perception. The implications highlight the impact of online media sentiment on digital democracy dynamics, providing valuable insights for political practitioners, policymakers, and media scholars. This study is not only academically significant but also offers practical insights for enhancing public understanding of the electoral process.



Downloads

Download data is not yet available.

References

Agusta, L. (2009). PERBANDINGAN ALGORITMA STEMMING PORTER DENGAN ALGORITMA NAZIEF & ADRIANI UNTUK STEMMING DOKUMEN TEKS BAHASA INDONESIA . Konferensi Nasional Sistem Dan Informatika, 196201.

Alvina Felicia Watratan, Arwini Puspita. B, & Dikwan Moeis. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology, 1(1), 714. https://doi.org/10.52158/jacost.v1i1.9

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944

Guswandari, A., & Cahyono, R. P. (2022). PENERAPAN SENTIMEN ANALIS MENGGUNAKAN METODE NAÏVE BAYES DAN SVM. Jurnal Ilmu Data, 2, 116.

Hadna, N. M., Santosa, P., & Winarno, W. (2016). Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen di Twitter.

Hafiz, Y. A., & Sudarmilah, E. (2023). IMPLEMENTASI WEB SCRAPING PADA PORTAL BERITA ONLINE. Inisiasi, 5560. https://doi.org/10.59344/inisiasi.v12i1.120

Limbong, J. J. A., Sembiring, I., & Hartomo, K. D. (2022). Analisis Klasifikasi Sentimen Ulasan pada E-Commerce Shopee Berbasis Word Cloud dengan Metode Naive Bayes dan K-Nearest Neighbor. Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(2), 347. https://doi.org/10.25126/jtiik.2022924960

McQuail, D. (1992). Media performance : mass communication and the public interest. Sage Publications.

Merriam-Webster, Inc. (2024, April 25). Merriam-Webster.com

Permadi, V. A. (2020). Analisis Sentimen Menggunakan Algoritma Naive Bayes Terhadap Review Restoran di Singapura. Jurnal Buana Informatika, 11(2), 141151. https://doi.org/10.24002/jbi.v11i2.3769

Pramana, S., Yuniarto, B., Kurniawan, R., Yordani, R., Lee, J., Amin, I., Satyaning, P. P. N. L. P., Riyadi, Y., Hasyyati, A. N., & Indriani, R. (2017). Big data for government policy: Potential implementations of bigdata for official statistics in Indonesia. 2017 International Workshop on Big Data and Information Security (IWBIS), 1721. https://doi.org/10.1109/IWBIS.2017.8275097

Putra, A., Haeirudin, D., Khairunnisa, H., & Latifah, R. (2021). Analisis Sentimen Masyarakat Terhadap Kebijakan PPKM Pada Media Sosial Twitter Menggunakan Algoritma Svm. Prosiding Semnastek.

Ratino, R. R., Hafidz, N. H. H., Anggraeni, S. A. A., & Gata, W. G. G. (2020). Sentimen Analisis Informasi Covid-19 Menggunakan Support Vector Machine Dan Naïve Bayes. Jurnal Penelitian Ilmu Dan Teknologi Komputer, 12(2), 111.

Setyohadi, D. B., Kristiawan, F. A., & Ernawati, E. (2017). Perbaikan Performansi Klasifikasi dengan Preprocessing Iterative Partitioning Filter Algorithm. Telematika, 14(1), 1220. https://doi.org/10.31315/telematika.v14i01.1960

Widiari, N. P. A., Suarjaya, I. M. A. D., & Githa, D. P. (2020). Teknik Data Cleaning Menggunakan Snowflake untuk Studi Kasus Objek Pariwisata di Bali. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 137. https://doi.org/10.24843/JIM.2020.v08.i02.p07

Wulandari, D. A., Saedudin, Rd. R., & Andreswari, R. (2021). ANALISIS SENTIMEN MEDIA SOSIAL TWITTER TERHADAP REAKSI MASYARAKAT PADA RUU CIPTA KERJA MENGGUNAKAN METODE KLASIFIKASI ALGORITMA NAIVE BAYES. E-Proceeding of Engineering, 8, 90079016.

Zhao, B. (2017). Web Scraping. In Encyclopedia of Big Data (pp. 13). Springer International Publishing. https://doi.org/10.1007/978-3-319-32001-4_483-1

Published
2024-06-30
Section
Articles
How to Cite
Pradipta, N. Y., & Soetanto, H. (2024). Sentiment Classification of General Election 2024 News Titles on Detik.com Online Media Website Using Multinominal Naive Bayes Method. Journal of Applied Science, Engineering, Technology, and Education, 6(1), 43-55. https://doi.org/10.35877/454RI.asci2754