Modification of Ballast Filtering Device on John Lie Training Ship to Prevent Marine Pollution

  • Haryadi Wijaya Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi, Manado, Indonesia (ID)
  • Kawilarang Warouw Alex Masengi Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi, Manado, Indonesia (ID)
  • Lefrand Manoppo Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi, Manado, Indonesia (ID)
  • Deiske Adeleine Sumilat Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi, Manado, Indonesia (ID)
  • Rizald Max Rompas Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi, Manado, Indonesia (ID)
  • Heffry Veibert Dien Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi, Manado, Indonesia (ID)
  • Vivanda Octova Joulanda Modaso Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi, Manado, Indonesia (ID)
Keywords: Ballast Air; John Lie; Ballast Filtering; Marine Pollution

Viewed = 0 time(s)

Abstract

This study aims to present appropriate selection methods for evaluation, analysis, and comparison between different ballast water treatment technology systems in order to make good decisions in selecting the most optimal treatment system. This research designed a ballast water filter device on the John Lie training ship to prevent marine pollution due to species movement through the ballast water transfer process by referring to the D2 standard of the IMO Ballast Water Management Convention. During the ballasting process, ballast water contains thousands of species of marine animals and plants that are carried in ballast tanks, causing problems for the marine environment and human health.  The modification of the filtration tool designed by the researcher used a 0,1 mm and 0,01 mm net tied to the ballast tank inlet pipe using a clamp on the ballast pipe of the John Lie training ship. This can fully be used during the process of filling ballast water from port seawater to enter the ballast tank through this filtration system. The results shown after passing the filter with a total plate count of 36 microorganisms indicate that the filtration system designed by the researcher can meet the D2 standard of the IMO BWM Convention Regulation.



Downloads

Download data is not yet available.

References

Bailey, S. A., Brydges, T., Casas-Monroy, O., Kydd, J., Linley, R. D., Rozon, R. M., & Darling, J. A. (2022). First evaluation of ballast water management systems on operational ships for minimizing introductions of nonindigenous zooplankton. Marine Pollution Bulletin, 182. https://doi.org/10.1016/j.marpolbul.2022.113947

Baroiu, N., Chebac, P., & Moroșanu, G.-A. (2021). Control and Management of Ballast Water on Commercial Ships. Journal of Danubian Studies and Research, 11(1), 160–171.

BİLGİN GÜNEY, C. (2022). Ballast Water Problem: Current Status and Expected Challenges. Marine Science and Technology Bulletin. https://doi.org/10.33714/masteb.1162688

Bradie, J., Rolla, M., Bailey, S. A., & MacIsaac, H. J. (2023). Managing risk of non-indigenous species establishment associated with ballast water discharges from ships with bypassed or inoperable ballast water management systems. Journal of Applied Ecology, 60(1). https://doi.org/10.1111/1365-2664.14321

Buana, S., Yano, K., & Shinoda, T. (2022). Design Evaluation Methodology for Ships’ Outfitting Equipment by Applying Multi-criteria Analysis: Proper Choices Analysis of Ballast Water Management Systems. International Journal of Technology, 13(2). https://doi.org/10.14716/ijtech.v13i2.5087

Čampara, L., Slišković, M., & Mrčelić, G. J. (2019). Key ballast water management regulations with a view on ballast water management systems type approval process. Nase More, 66(2). https://doi.org/10.17818/NM/2019/2.5

Casas-Monroy, O., & Bailey, S. A. (2021). Do Ballast Water Management Systems Reduce Phytoplankton Introductions to Canadian Waters? Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.691723

Chen, Y. C., Château, P. A., & Chang, Y. C. (2023). Hybrid multiple-criteria decision-making for bulk carriers ballast water management system selection. Ocean and Coastal Management, 234. https://doi.org/10.1016/j.ocecoaman.2022.106456

Čulin, J., & Mustać, B. (2015). Environmental risks associated with ballast water management systems that create disinfection by-products (DBPs). In Ocean and Coastal Management (Vol. 105). https://doi.org/10.1016/j.ocecoaman.2015.01.004

Dachev, Y., Tsvetkov, M., & Zlatev, V. (2021). Ship ballast water treatment. WSEAS Transactions on Environment and Development, 17. https://doi.org/10.37394/232015.2021.17.11

Drake, L. A. (2015). Review of “Global maritime transport and ballast water management” by M. David and S. Gollasch, eds. Biological Invasions, 17(10). https://doi.org/10.1007/s10530-015-0925-0

Friedman, W. R., Halpern, B. S., McLeod, E., Beck, M. W., Duarte, C. M., Kappel, C. V., Levine, A., Sluka, R. D., Adler, S., O’Hara, C. C., Sterling, E. J., Tapia-Lewin, S., Losada, I. J., McClanahan, T. R., Pendleton, L., Spring, M., Toomey, J. P., Weiss, K. R., Possingham, H. P., & Montambault, J. R. (2020). Research Priorities for Achieving Healthy Marine Ecosystems and Human Communities in a Changing Climate. In Frontiers in Marine Science (Vol. 7). https://doi.org/10.3389/fmars.2020.00005

Goldsmit, J., Nudds, S. H., Stewart, D. B., Higdon, J. W., Hannah, C. G., & Howland, K. L. (2019). Where else? Assessing zones of alternate ballast water exchange in the Canadian eastern Arctic. Marine Pollution Bulletin, 139. https://doi.org/10.1016/j.marpolbul.2018.11.062

Gollasch, S., & David, M. (2017). Recommendations for representative ballast water sampling. Journal of Sea Research, 123. https://doi.org/10.1016/j.seares.2017.02.010

Hasanspahić, N., Pećarević, M., Hrdalo, N., & Čampara, L. (2022). Analysis of Ballast Water Discharged in Port—A Case Study of the Port of Ploče (Croatia). Journal of Marine Science and Engineering, 10(11). https://doi.org/10.3390/jmse10111700

Hess-Erga, O. K., Moreno-Andrés, J., Enger, Ø., & Vadstein, O. (2019). Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. In Science of the Total Environment (Vol. 657). https://doi.org/10.1016/j.scitotenv.2018.12.004

Hoang, A. T., Nguyen, X. P., Le, A. T., Huynh, T. T., & Pham, V. V. (2021). Covid-19 and the global shift progress to clean energy. Journal of Energy Resources Technology, Transactions of the ASME, 143(9). https://doi.org/10.1115/1.4050779

Hyun, B., Cha, H. G., An, Y. K., Park, Y. S., Jang, M. C., Jang, P. G., & Shin, K. (2021). Potential applications of a novel ballast water pretreatment device: grinding device. Journal of Marine Science and Engineering, 9(11). https://doi.org/10.3390/jmse9111213

Ivce, R., Zekic, A., Mohovic, D., & Kriskovic, A. (2021). Review of Ballast Water Management. Proceedings Elmar - International Symposium Electronics in Marine, 2021-Septe, 189–192. https://doi.org/10.1109/ELMAR52657.2021.9551002

Jang, P. G., Hyun, B., & Shin, K. (2020). Ballast water treatment performance evaluation under real changing conditions. Journal of Marine Science and Engineering, 8(10). https://doi.org/10.3390/jmse8100817

Lakshmi, E., Priya, M., & Achari, V. S. (2021). An overview on the treatment of ballast water in ships. In Ocean and Coastal Management (Vol. 199). https://doi.org/10.1016/j.ocecoaman.2020.105296

Lee, J., Shon, M. B., Cha, H. G., & Choi, K. H. (2017). The impact of adding organic carbon on the concentrations of total residual oxidants and disinfection by-products in approval tests for ballast water management systems. Science of the Total Environment, 605–606. https://doi.org/10.1016/j.scitotenv.2017.06.263

Minh Quang Chau, Danh, C. N., Anh, T. H., Vinh, T. Q., & Viet, P. Van. (2020). A Numeral Simulation Determining Optimal Ignition Timing Advance of SI Engines Using 2.5-Dimethylfuran-Gasoline Blends. International Journal on Advanced Science, Engineering and Information Technology, 10(5).

Olenin, S., Ojaveer, H., Minchin, D., & Boelens, R. (2016). Assessing exemptions under the ballast water management convention: Preclude the Trojan horse. Marine Pollution Bulletin, 103(1–2). https://doi.org/10.1016/j.marpolbul.2015.12.043

Outinen, O., Bailey, S. A., Broeg, K., Chasse, J., Clarke, S., Daigle, R. M., Gollasch, S., Kakkonen, J. E., Lehtiniemi, M., Normant-Saremba, M., Ogilvie, D., & Viard, F. (2021). Exceptions and exemptions under the ballast water management convention – Sustainable alternatives for ballast water management? Journal of Environmental Management, 293. https://doi.org/10.1016/j.jenvman.2021.112823

Rees, S. E., Sheehan, E. V., Stewart, B. D., Clark, R., Appleby, T., Attrill, M. J., Jones, P. J. S., Johnson, D., Bradshaw, N., Pittman, S., Oates, J., & Solandt, J. L. (2020). Emerging themes to support ambitious UK marine biodiversity conservation. Marine Policy, 117. https://doi.org/10.1016/j.marpol.2020.103864

Saha, M., Berdalet, E., Carotenuto, Y., Fink, P., Harder, T., John, U., Not, F., Pohnert, G., Potin, P., Selander, E., Vyverman, W., Wichard, T., Zupo, V., & Steinke, M. (2019). Using chemical language to shape future marine health. Frontiers in Ecology and the Environment, 17(9). https://doi.org/10.1002/fee.2113

Sayinli, B., Dong, Y., Park, Y., Bhatnagar, A., & Sillanpää, M. (2022). Recent progress and challenges facing ballast water treatment – A review. In Chemosphere (Vol. 291). https://doi.org/10.1016/j.chemosphere.2021.132776

Wang, Z., Nong, D., Countryman, A. M., Corbett, J. J., & Warziniack, T. (2020). Potential impacts of ballast water regulations on international trade, shipping patterns, and the global economy: An integrated transportation and economic modeling assessment. Journal of Environmental Management, 275. https://doi.org/10.1016/j.jenvman.2020.110892

Published
2023-06-30
Section
Articles
How to Cite
Wijaya, H., Masengi, K. W. A., Manoppo, L., Sumilat, D. A., Rompas, R. M., Dien, H. V., & Modaso, V. O. J. (2023). Modification of Ballast Filtering Device on John Lie Training Ship to Prevent Marine Pollution. Journal of Applied Science, Engineering, Technology, and Education, 5(1), 64-72. https://doi.org/10.35877/454RI.asci1736