The Bioinformatics Application in Detecting Germline and Somatic Variants towards Breast Cancer using Next Generation Sequencing

  • Rizka Retnomawarti Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia (ID)
  • Sonar Soni Panigoro Surgical Oncology Division, Department of Surgery, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia (ID)
  • Rafika Indah Paramita (1) Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia; (2) Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia; (3) Bioinformatics Core Facilities – IMERI, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia (ID)
Keywords: Germline, NGS, Pipeline, Somatic

Viewed = 0 time(s)

Abstract

Breast cancer is the type of cancer with the most and the highest cases causing mortality in Indonesia, so an effective   treatment is required to reduce the incidence and mortality rate due to cancer breasts. Most breast cancer patients are   diagnosed at an advanced stage so the treatment used are limited and the risk of death becomes higher. Along with the development of human genome sequencing technology, the genetic examination of breast cancer is considered as an examination that can be used for early prevention and treatment management personally. Based on the target variants detected, the genetic examination of breast cancer can be divided into two, namely the examination of germline variants and somatic variants. Germline variant examination is intended to predict the risk of breast cancer which can be used as an early preventive measure, while somatic variant examination is intended for cancer diagnosis    and management therapy. NGS technology is able to detect both types of variants in a number of genes associated with breast cancer in several samples effectively and quickly. However, the data generated from NGS technology is very large and complex, so the role of bioinformatics is required in analyzing and interpreting data. By utilizing bioinformatics pipelines and tools, analysis of germline variants and somatic variants in breast cancer can be carried out accurately so that the results of genetic examinations can be used as a step to treat breast cancer. 



Downloads

Download data is not yet available.

References

Bai, H., Yu, J., Jia, S., Liu, X., Liang, X., & Li, H. (2021). Prognostic value of the tp53 mutation location in metastatic breast cancer as detected by next-generation sequencing. Cancer Management and Research, 13, 3303–3316. https://doi.org/10.2147/CMAR.S298729

Behjati, S., & Tarpey, P. S. (2013). What is next generation sequencing? Archives of Disease in Childhood: Education and Practice Edition, 98(6), 236–238. https://doi.org/10.1136/archdischild-2013-304340

Broad Institute. (2020). Somatic short variant discovery (SNVs + Indels). Broad Institute.

Campbell, P. J., & Martincorena, I. (2015). Somatic mutation in cancer and normal cells. Science, 349(6255), 1483–1488.

Chatrath, A., Ratan, A., & Dutta, A. (2021). Germline Variants That Affect Tumor Progression. Trends in Genetics, 37(5), 433–443. https://doi.org/10.1016/j.tig.2020.10.005

Desai, N. V., Yadav, S., Batalini, F., Couch, F. J., & Tung, N. M. (2021). Germline genetic testing in breast cancer: Rationale for the testing of all women diagnosed by the age of 60 years and for risk-based testing of those older than 60 years. Cancer, 127(6), 828–833. https://doi.org/10.1002/cncr.33305

Ginsburg, O., Yip, C. H., Brooks, A., Cabanes, A., Caleffi, M., Yataco, J. A. D., Gyawali, B., McCormack, V., de Anderson, M. M. L., Mehrotra, R., Mohar, A., Murillo, R., Pace, L. E., Paskett, E. D., Romanoff, A., Rositch, A. F., Scheel, J. R., Schneidman, M., Unger-Saldaña, K., … Anderson, B. O. (2020). Breast Cancer Early Detection: A Phased Approach to Implementation. Cancer, 126(S10). https://doi.org/10.1002/cncr.32887

Huang, Y., & Davidson, N. E. (2006). Breast cancer. Principles of Molecular Medicine, 728–735. https://doi.org/10.1007/978-1-59259-963-9_74

Ilumina. (2021). Next-Generation Sequencing (NGS) | Explore the technology. Innovative Technologies.

Institute, B. (n.d.). Germline short variant discovery (SNPs + Indels). Germline Short Variant Discovery (SNPs + Indels).

Ion Semiconductor Sequencing - an overview | ScienceDirect Topics. (n.d.).

Li, M. M., Datto, M., Duncavage, E. J., Kulkarni, S., Lindeman, N. I., Roy, S., Tsimberidou, A. M., Vnencak-Jones, C. L., Wolff, D. J., Younes, A., & Nikiforova, M. N. (2017). Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. Journal of Molecular Diagnostics, 19(1), 4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002

Lynch, J. A., Venne, V., & Berse, B. (2015). Genetic tests to identify risk for breast cancer. Seminars in Oncology Nursing, 31(2), 100–107. https://doi.org/10.1016/j.soncn.2015.02.007

Mathioudaki, A., Ljungström, V., Melin, M., Arendt, M. L., Nordin, J., Karlsson, Å., Murén, E., Saksena, P., Meadows, J. R. S., Marinescu, V. D., Sjöblom, T., & Lindblad-Toh, K. (2020). Targeted sequencing reveals the somatic mutation landscape in a Swedish breast cancer cohort. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-74580-1

McFadyen R. (2020). NGS Data analysis workflow.

National Cancer institute. (n.d.). Definition of locus - NCI Dictionary of Genetics Terms - NCI.

National Health Service. (2016). Genomics Education Programme. 21(6), 747–754.

NGS Workflow and Fundamentals of Sample Preparation - Enzo Life Sciences. (n.d.).

Ozcelik, H., Shi, X., Chang, M. C., Tram, E., Vlasschaert, M., Di Nicola, N., Kiselova, A., Yee, D., Goldman, A., Dowar, M., Sukhu, B., Kandel, R., & Siminovitch, K. (2012). Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. Journal of Molecular Diagnostics, 14(5), 467–475. https://doi.org/10.1016/j.jmoldx.2012.03.006

Roy, S., Coldren, C., Karunamurthy, A., Kip, N. S., Klee, E. W., Lincoln, S. E., Leon, A., Pullambhatla, M., Temple-Smolkin, R. L., Voelkerding, K. V., Wang, C., & Carter, A. B. (2018). Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Association for Molecular Pathology and the College of American Pathologists. Journal of Molecular Diagnostics, 20(1), 4–27. https://doi.org/10.1016/j.jmoldx.2017.11.003

Shlee. (2015). Somatic calling is NOT simply a difference between two callsets.

Tschiderer, L., Seekircher, L., Kunutsor, S. K., Peters, S. A. E., O’keeffe, L. M., & Willeit, P. (2022). Breastfeeding Is Associated With a Reduced Maternal Cardiovascular Risk: Systematic Review and Meta-Analysis Involving Data From 8 Studies and 1 192 700 Parous Women. In Journal of the American Heart Association (Vol. 11, Issue 2). https://doi.org/10.1161/JAHA.121.022746

Van Horebeek, L., Dubois, B., & Goris, A. (2019). Somatic Variants: New Kids on the Block in Human Immunogenetics. Trends in Genetics, 35(12), 935–947. https://doi.org/10.1016/j.tig.2019.09.005

Walsh, T., Lee, M. K., Casadei, S., Thornton, A. M., Stray, S. M., Pennil, C., Nord, A. S., Mandell, J. B., Swisher, E. M., & King, M. C. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12629–12633. https://doi.org/10.1073/pnas.1007983107

Wang, L., Zhang, S., & Wang, X. (2021). The Metabolic Mechanisms of Breast Cancer Metastasis. In Frontiers in Oncology (Vol. 10). https://doi.org/10.3389/fonc.2020.602416

Welch, J. S., Larson, D. E., Wallis, J., Chen, K., Payton, J. E., Fulton, R. S., Veizer, J., Schmidt, H., Vickery, T. L., Watson, M. A., Link, D. C., Graubert, T. A., Mardis, E. R., Ley, T. J., & Wilson, R. K. (2011). Use of Whole-Genome Sequencing to Diagnose a Cryptic Fusion Oncogene. Jama, 305(15), 1577–1584.

What_is_the_Difference_Between_Potentia. (n.d.). Verywell Health.

Yaoting Gui1, 12, Guangwu Guo2, 12, Yi Huang1, 12, Xueda Hu2, 12, Aifa Tang1, 3, 12, Shengjie Gao2, Renhua Wu2, Chao Chen2, Xianxin Li1, Liang Zhou1, Minghui He2, Zesong Li1, 3, Xiaojuan Sun3, Wenlong Jia2, Jinnong Chen2, Shangming Yang2, Fangjian Zhou4, C. L. (2017). Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. 21(2), 129–139.

Zaccaria, S., & Raphael, B. J. (2020). Accurate quantification of copy-number aberrations and whole-genome duplications in multi-sample tumor sequencing data. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17967-y

Zardavas, D., Phillips, W. A., & Loi, S. (2014). PIK3CA mutations in breast cancer: Reconciling findings from preclinical and clinical data. Breast Cancer Research, 16(1). https://doi.org/10.1186/bcr3605

Zhao, S., Agafonov, O., Azab, A., Stokowy, T., & Hovig, E. (2020). Accuracy and efficiency of germline variant calling pipelines for human genome data. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-77218-4

Published
2023-06-30
Section
Articles
How to Cite
Retnomawarti, R., Panigoro, S. S., & Paramita, R. I. (2023). The Bioinformatics Application in Detecting Germline and Somatic Variants towards Breast Cancer using Next Generation Sequencing. Journal of Applied Science, Engineering, Technology, and Education, 5(1), 25-34. https://doi.org/10.35877/454RI.asci1608